Разновидности двс: какие существуют двигатели внутреннего сгорания

Газораспределительный механизм двигателя внутреннего сгорания: устройство, назначение, принцип работы

Рабочий цикл четырехтактного двигателя

Рабочий цикл дизеля существенно отличается от рабочего цикла

карбюраторного двигателя способом образования и воспламенения рабочей

смеси.

Процесс впуска. Впуск воздуха начинается при открытом впускном клапане и заканчивается в момент закрытия его. Впускной клапан открывается. Процесс впуска воздуха происходит также, как и впуск горючей смеси в карбюраторном двигателе. Давление воздуха в цилиндре в течении процесса впуска составляет 80 – 95 кПа и зависит от гидравлических потерь во впускной системе двигателя. Температура воздуха в конце процесса выпуска повышается до 320 – 350 К за счет соприкосновения его с нагретыми деталями двигателя и смешивания с остаточными газами.

Процесс сжатия. Сжатие воздуха, находящегося в цилиндре, начинается после закрытия впускного клапана и заканчивается в момент впрыска топлива в камеру сгорания. Процесс сжатия происходит аналогично сжатию рабочей смеси в карбюраторном двигателе. Давление воздуха в цилиндре в конце сжатия 3.5 – 6 МПа, а температура 820 – 980 К.

Процесс сгорания. Сгорание топлива начинается с момента начала подачи топлива в цилиндр, т.е. за 15 – 30 до прихода поршня в ВМТ. В этот момент температура сжатого воздуха на 150 – 200 С выше температуры самовоспламенения. Топливо, поступившее в мелкораспыленном состоянии в цилиндр, воспламеняется не мгновенно, а с задержкой в течение некоторого времени (0.001 – 0.003 с), называемого периодом задержки воспламенения. В этот период топливо прогревается, перемешивается с воздухом и испаряется, т.е. образуется рабочая смесь.

Подготовленное топливо воспламеняется и сгорает. В конце сгорания давление газов достигает 5.5 – 11 МПа, а температура 1800 – 2400 К.

Процесс расширения. Тепловое расширение газов, находящихся в цилиндре, начинается после окончания процесса сгорания и заканчивается в момент закрытия выпускного клапана. В начале расширения происходит догорание топлива. Процесс теплового расширения протекает аналогично процессу теплового расширения газов в карбюраторном двигателе. Давление газов в цилиндре к концу расширения 0.3 – 0.5 МПа, а температура 1000 – 1300 К.

Процесс выпуска. Выпуск отработавших газов начинается при открытии

выпускного клапана и заканчивается в момент закрытия выпускного клапана. Процесс выпуска отработавших газов происходит также, как и процесс выпуска газов в карбюраторном двигателе. Давление газов в цилиндре в процессе выталкивания 0.11 – 0.12 МПа, температура газов в конце процесса выпуска 700 – 900 К.

Автомобильные двигатели

Наддув автомобильных двигателей: назначение, классификация, регулирование.

Одним из наиболее эффективных мероприятий, повышающих литровую мощность двигателя, является наддув, позволяющий увеличить массу свежего заряда. В карбюраторных двигателях наддув почти не применяется из-за опасности возникновения детонации.

Влияние частоты вращения коленчатого вала n на литровую мощность двигателя необходимо оценивать по комплексному множителю n ηv ηм. При повышении частоты вращения для форсирования двигателя необходимо, чтобы этот множитель был максимальным.

Значительно более широкое распространение в мире получил наддув с турбонагнетателем, т.е. нагнетателем, приводимым турбиной, действующей на отработавших газах.

Классификация видов наддува ДВС.

Агрегатный наддув осуществляется с помощью нагнетателя. Он подразделяется на:

механический наддув, где используется компрессор, приводимый в действие от коленчатого вала двигателя;

турбонаддув, где компрессор (обычно центробежный) приводится турбиной, вращаемой выхлопными газами двигателя;

наддув «Comprex», заключающийся в использовании давления отработавших газов, действующих непосредственно на поток воздуха, подаваемого в двигатель;

электрический наддув, где используется нагнетатель, вращаемый электродвигателем;

комбинированный наддув объединяет несколько схем, как правило, речь идет о совмещении механического и турбонаддува.

Безагрегатный наддув. К нему относят:

резонансный наддув (иногда называемый инерционным или акустическим), реализуемый за счёт колебательных явлений в трубопроводах;

динамический наддув (скоростной или пассивный наддув) увеличивает давление во впускном коллекторе за счет воздухозаборников особой формы при движении с высокой скоростью;

рефрижерационный наддув достигается испарением в поступающем воздухе топлива или какой-либо другой горючей жидкости с низкой температурой кипения и большой теплотой парообразования, на автомобильных двигателях не применяется.

Механический наддув

Механический наддув позволяет легко поднять мощность двигателя. Основным элементом в такой системе является нагнетатель, приводимый непосредственно от коленчатого вала двигателя. Механический нагнетатель способен закачивать воздух в цилиндры при минимальных оборотах и без задержки, увеличивая давления наддува строго пропорционально оборотам двигателя, что является важным преимуществом подобной схемы. Однако механический наддув имеет и существенный недостаток – он отбирает на свою работу часть мощности двигателя.

В последнее время совершенствование концепций наддува идет по пути создания регулирующих систем для повышения крутящего момента при низких оборотах двигателя, а также снижения инерционности.

Существует несколько способов решения данной проблемы:

применение турбины с изменяемой геометрией;

использование двух параллельных турбонагнетателей;

использование двух последовательных турбонагнетателей;

комбинированный наддув.

Турбина с изменяемой геометрией обеспечивает оптимизацию потока отработавших газов за счет изменения площади входного канала. Турбины с изменяемой геометрией нашли широкое применение в турбонаддуве дизельных двигателей, к примеру турбонаддув двигателя «TDI» от «Volkswagen».

Система с двумя параллельными турбонагнетателями (система «biturbo») применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.

При установке на двигатель двух последовательных турбин (система «twin-turbo») максимальная производительность системы достигается за счет использования разных турбонагнетателей на разных оборотах двигателя.

Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический компрессор. С ростом оборотов подхватывает турбонагнетатель, а механический компрессор отключается. Примером такой системы является двойной наддув двигателя «TSI» от «Volkswagen».

После отказа от карбюраторов и переходе на электронный впрыск топлива особенно эффективным стал турбонаддув на бензиновых двигателях. Здесь уже достигнута впечатляющая топливная экономичность.

В целом же, следует признать, что турбонаддув, увеличивая тепловые и механические нагрузки, заставляет вводить в конструкцию ряд упрочненных узлов, усложняющих двигатель как в производстве, так и при техническом обслуживании.

Система питания

Эта система обеспечивает подготовку топлива для дальнейшей подачи его в цилиндры. Конструкция этой системы зависит от используемого двигателем топлива. Основным сейчас является топливо, выделенное из нефти, причем разных фракций – бензин и дизельное топливо.

У двигателей, использующих бензин, имеется два вида топливной системы – карбюраторная и инжекторная. В первой системе смесеобразование производится в карбюраторе. Он производит дозировку и подачу топлива в проходящий через него поток воздуха, далее уже эта смесь подается в цилиндры. Состоит такая система и топливного бака, топливопроводов, вакуумного топливного насоса и карбюратора.

Карбюраторная система

То же делается и в инжекторных авто, но у них дозировка более точная. Также топливо в инжекторах добавляется в поток воздуха уже во впускном патрубке через форсунку. Эта форсунка топливо распыляет, что обеспечивает лучшее смесеобразование. Состоит инжекторная система из бака, насоса, расположенного в нем, фильтров, топливопроводов, и топливной рампы с форсунками, установленной на впускном коллекторе.

У дизелей же подача составляющих топливной смеси производится раздельно. Газораспределительный механизм через клапаны подает в цилиндры только воздух. Топливо же в цилиндры подается отдельно, форсунками и под высоким давлением. Состоит данная система из бака, фильтров, топливного насоса высокого давления (ТНВД) и форсунок.

Отличие дизельного двигателя от бензинового

Недавно появились инжекторные системы, которые работают по принципу дизельной топливной системы – инжектор с непосредственным впрыском.

Система отвода отработанных газов обеспечивает вывод продуктов горения из цилиндров, частичную нейтрализацию вредных веществ, и снижение звука при выводе отработанного газа. Состоит из выпускного коллектора, резонатора, катализатора (не всегда) и глушителя.

Классификация двигателей внутреннего сгорания

2-х тактный двигатель внутреннего сгорания Двигатели внутреннего сгорания могут быть классифицированы по следующим признакам:

  • 1) по числу тактов за рабочий цикл — четырех- и двухтактные. В четырехтактных двигателях рабочий цикл совершается за четыре хода поршня
  • (такта), или за два оборота коленчатого вала, а в двухтактных — за два хода поршня, или один оборот коленчатого вала;
  • 2) по термодинамическому циклу — двигатели с подводом теплоты при постоянном объеме (карбюраторные и газовые), с подводом теплоты при постоянном давлении (компрессорные дизели), со смешанным подводом тепла: частично при постоянном объеме и частично при постоянном давлении (бескомпрессорные дизели);
  • 3) по способу смесеобразования — двигатели с внешним смесеобразованием, в которых рабочая смесь образуется вне цилиндра с помощью карбюратора (карбюраторные двигатели) или смесителя (газовые двигатели), и с внутренним смесеобразованием, в которых рабочая смесь образуется внутри цилиндра распыливанием топлива в камере сгорания (дизели);
  • 4) по способу воспламенения рабочей смеси — двигатели с воспламенением смеси от постороннего источника — электрической свечи (карбюраторные и газовые) и двигатели с воспламенением смеси от сжатия (дизели);
  • 5) по роду применяемого топлива — двигатели, работающие на легком топливе (бензин, лигроин, керосин), на тяжелом топливе (дизельное топлив, моторное топливо, газойль), на газообразном топливе (природный и генераторный газ);
  • 6) по быстроходности — тихоходные и быстроходные. Показателем быстроходности двигателя является средняя скорость поршняСт

где S

— ход поршня, м;п — частота вращения коленчатого вала, об/мин.

За один оборот поршень совершает 2п

ходов, г.е.

При Ст 6,5 м/с двигатели считаются тихоходными, при Ст > 6,5 м/с — б ыстрохо д н ы м и;

  • 7) по частоте вращения коленчатого вала — малооборотные (до 250 об/мин), повышенной оборотности (250—750 об/мин), среднеоборотные (750— 1500 об/мин), высокооборотные (свыше 1500 об/мин);
  • по числу цилиндров — одно- и многоцилиндровые (двух-, трех-, четырехцилиндровые и т.д.);

  • 9) по расположению цилиндров — двигатели с однорядным вертикальным, V- и W-образным расположением цилиндров и т.п. (рис. 16.1);
  • 10) по конструкции поршня — тронковые и крейцкопфные (рис. 16.2).

Поршень в тронковых двигателях (рис. 16.2, а)

непосредственно соединен с шатуном, и его нижняя тронковая часть служит ползуном, передающим давление поршня на стенки цилиндра. В крейцкопфных двигателях (рис. 16.2,6) поршень посажен на шток1, соединенный со специальным ползуном (крейцкопфом)2. Последний перемещается по направляющим3, которые воспринимают боковое давление.

Рис. 16.1.Схемы двигателей:а —

однорядные;б — V-образные;в — сдвоенные, с параллельным расположением рядов;г — звездообразные;д — с противоположно движущимися поршнями;е — Д-образные

Рис. 16.2.

Схемы ДВС:

а —

тронкового;б — крейцкопфного:1 — шток;2 — ползун (крейцкопф);3 — направляющие

К преимуществам тронкового двигателя относятся меньшая высота и меньший вес подвижных деталей, что особенно важно для быстроходных двигателей. Недостатком двигателей такого типа является сильный эллиптический износ цилиндра;

  • 11) по наличию устройства ,изменяющего направление вращения коленчатого вала , — реверсивные и нереверсивные;
  • 12) по назначению — автомобильные, тракторные, тепловозные, судовые, стационарные и т.д. Специально для подъемно-транспортных машин ДВС не выпускают.

По ГОСТ Р 53638—2009 каждому типу двигателя присваивается условное обозначение Входящие в него буквы означают: Ч — четырехтактный; Д — двухтактный; Р — реверсивный (отсутствие буквы Р указывает на то, что двигатель нереверсивный); С — судовой с реверсивной муфтой; II — с редукторной передачей; Н — с наддувом.

Цифры, стоящие перед буквами, указывают число цилиндров, а после них — диаметр цилиндра (в числителе) и ход поршня (в знаменателе) в сантиметрах. Например, марка двигателя 6ЧРП 25/34 расшифровывается так: шестицилиндровый четырехтактный реверсивный с редукторной передачей с диаметром цилиндра 25 см и ходом поршня 34 см.

Классификация двигателей по различным основаниям

Различные критерии, дают возможность сгруппировать типы моторов.

1. Применение мотора:

  • моторы, относящиеся к стационарному типу, используются на электрических станциях малой и средней мощности, для обеспечения работоспособности насосов, а также распространены в сельскохозяйственных агрегатах;
  • как видно из названия транспортные силовые установки, нашли своё применение в различных наземных, воздушных, а также водных транспортах.

2. По виду применяемой топливной смеси:

  • лёгкие виды горючего (бензиновые, бензольные, керосиновые, лигроиновые, спиртовые);
  • тяжёлые виды горючего;
  • газовые силовые установки (генераторные, природные газы);
  • смешанные виды горючего; первичное горючее — газ, для старта мотора применяют жидкое горючее;
  • использующие разное горючее.

3. По типу преобразования энергии:

  • поршневые моторы;
  • газотурбинные установки;
  • моторы комбинированного типа.

4. По типу образования смеси:

  • внешнее образование смеси; 
  • внутреннее образование смеси.

5. По типу воспламенения топливной смеси:

  • моторы с искровым воспламенением;
  • установки с воспламенением от давления;
  • устройства с форкамерно — факельным воспламенением;
  • моторы с газожидкостным воспламенением.

6. В зависимости от конструкции выделяют:

  • моторы поршневого типа, они подразделяются на: вертикальные; горизонтальные; V-образные; звездообразные; противолежащими цилиндрами.
  • моторы роторно-поршневого типа, делятся на: а. двигатели в которых ротор планетарно движется внутри корпуса. Во время движения, между ротором и корпусными стенками возникают камеры с переменным объёмом, внутри этих камер происходит цикл. Это наиболее распространённая схема; б. моторы в которых вместо ротора планетарно движется корпус, а сам ротор остаётся неподвижным; в. установки, в которых корпус и ротор вращательно движутся — бироторные двигатели.

7. По типу охлаждения выделяют:

  • с жидкостной охладительной системой;
  • с воздушной охладительной системой.

Все ответы

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Great Авто
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.

Adblock
detector