Калильное зажигание и его отличие от детонации

Образование смеси в бензиновых двигателях

В основном приготовление однородной смеси осуществляется на двигателях с искровым зажиганием, т.е. всасываемый воздух полно­стью смешивается с испаряемым и распы­ленным топливом во время тактов впуска и сжатия. Превосходная испаряемость бензина позволяет впрыскивать его во впускной трубо­провод. С другой стороны, современные дви­гатели с послойным распределением заряда топлива характеризуются частично гетероген­ным смесеобразованием.

На процесс смесеобразования оказывают значительное влияние условия испарения то­плива, давление впрыска, движение заряда топлива в цилиндре и время, необходимое для гомогенизации смеси. В сущности, сме­сеобразование связано с взаимодействием двух процессов: испарение капелек топлива, вызванного разностью температур (см. рис. «Испарение топлива» ) и их расщепления под действием аэродина­мических сил (см. рис. «Образование капель топлива» ). Здесь различают впрыск топлива во впускной трубопровод и прямой впрыск топлива (см. табл. «Приготовление рабочей смеси в двигателях с искровым зажиганием» ).

Впрыск топлива во впускной трубопровод

В случае впрыска топлива во впускной трубопро­вод перед впускным клапаном создается пленка топлива, масса которой уменьшается по мере воз­растания скорости движения воздуха. Эта скорость движения воздуха линейно изменяется в зависимости от скорости вращения двигателя. Вслед­ствие низкой температуры и неполного испарения топлива во впускном трубопроводе с образованием в результате топливной пленки, впрыск топлива во впускной трубопровод происходит при очень низ­ком давлении впрыска, менее 10 бар.

Динамика поведения сцепленной со стенками впускного трубопровода пленки и механизмы, действующие во время испарения, являются одними из главных причин неточного дозиро­вания топлива, прежде всего во время работы двигателя в переходных режимах. Внутренней части цилиндра достигают только капли то­плива малого размера, захваченные потоком воздуха (см. рис. «Образование капель топлива» ). Типичный диаметр капель составляет 30 мкм. Ускорение капель пропор­ционально скорости движения капель относительно воздуха в зависимости от их диаметра.

Очень высокая степень турбулентности и высокие скорости потока дают очень хорошее смесеобразование. По мере развития процесса испаряются оставшиеся капли топлива малого размера. Топливо приобретает температуру смеси (см. рис. «Испарение капель топлива» ), и происходит гомогениза­ция смеси. За счет оптимальной конструкции камеры сгорания предотвращается интенсив­ный контакт топлива с ее стенками, всегда при­водящий к риску конденсации.

Прямой впрыск топлива

В системах прямого впрыска топлива (бен­зина) механизмы смесеобразования в зазоре клапана не используются. Поэтому здесь тре­буется более высокое давление впрыска, от 50 до 100 бар. Для обеспечения достаточного для гомогенизации времени впрыск произво­дится не позже момента достижения порш­нем нижней мертвой точки.

Затем впрыснутая смесь сжимается, в зависимости, прежде всего, от положения дроссельной заслонки и степени сжатия двигателя до уровня давления от 10 до 40 бар. Это соответствует уровню температуры от 300 до 500 °С, в зависимости, прежде всего, от степени сжатия. В гетерогенных процессах впрыск производится только в конце фазы сжатия.

Преимущество прямого впрыска топлива заключается в его точном дозировании. Про­цесс испарения топлива в камере сгорания также требует надлежащего охлаждения заряда топлива в цилиндре. Это позволяет повысить степень сжатия примерно на одну единицу, что дает повышение к.п.д. двига­теля.

Во всех процессах сгорания окисление топлива происходит только в конце фазы сжатия и в начале фазы расширения.

Преимущества и недостатки

С 70-х годов прошлого столетия использование дизельных двигателей в более крупных дорожных и внедорожных транспортных средствах в США возросло. Согласно данным Британского общества производителей и производителей автомобилей, средний показатель по ЕС для дизельных авто составляет 50 % от общего объема продаж (среди них 70 % – во Франции и 38 % – в Великобритании).

В холодную погоду запуск высокоскоростных дизельных двигателей может быть затруднен, поскольку масса блока и головки цилиндров поглощает тепло сжатия, предотвращая воспламенение из-за более высокого отношения поверхности к объему. Предварительно такие агрегаты используют небольшие электрические нагреватели внутри камер, называемых свечами накаливания.

Советы экспертов

Если в топливном баке готовится слишком богатая смесь, первое, что рекомендуют сделать опытные автомеханики, это сбросить дополнительные настройки работы инжектора. Если владелец производил самостоятельные настройки системы регулировки топлива, он мог допустить серьезные ошибки. Богатая топливная смесь приведет к неизбежной поломке мотора очень скоро.

Если причина отклонений связана с системой форсунок, это можно определить визуально. При такой неисправности на внешней стороне инжектора появляются следы сгорания топлива.

Гарь и копоть можно обнаружить также и на одной стороне уплотнительного медного кольца. Такие отклонения бывают вызваны неправильной установкой инжектора. Если уплотнительное кольцо находится не на своем месте, также возможны подобные неисправности.

Когда смесь становится богатой

Отклонения приготовления смеси появляются в результате определенных сбоев систем автомобиля. За процесс создания горючего отвечает инжектор. Он готовит смеси с определенным процентным содержанием кислорода. Именно эта способность представленного элемента двигателя дает возможность двигателю работать в разных режимах.

При необходимости водитель может, благодаря такому устройству, повысить скорость, справиться с подъемом, пойти на обгон и т. д.

Богатая смесь на инжекторе определяется математической формулой. Нормальным считается соотношение на 1 кг жидкого горючего 14,7 кг кислорода. Если в этой формуле по каким-то причинам увеличивается количество кислорода, такой состав называется бедным. Если же в смеси поднимается показатель количества топлива, смесь приобретает статус богатой.

Владелец автомобиля может самостоятельно отрегулировать уровень подачи кислорода к топливной смеси. Ошибки, допущенные в этом процессе, приводят к поломкам и неправильной работе транспортного средства.

Почему мотор не глохнет после его остановки

Хотя калильное зажигание не является детонацией топлива, появление КЗ часто становится последствием детонации двигателя и результатом перегрева силового агрегата. Двигатель продолжает работать после выключения зажигания по двум основным причинам:

  • одной из них является так называемый дизелинг;
  • другой выступает КЗ (калильное зажигание);

Отметим, что многие автолюбители ошибочно путают понятия калильного зажигание, дизелинга и детонации. В случае продолжения работы мотора после выключения зажигания причиной может оказаться как КЗ, так и дизелинг. Указанное явление несколько отличается по своей природе от калильного зажигания, хотя имеет схожие симптомы.

Неисправности систем для прекращения подачи топлива

Для нейтрализации эффекта, когда двигатель не глохнет после выключения зажигания, на карбюраторные автомобили устанавливаются специальные устройства. Такими решениями являются электромагнитные клапаны в системе холостого хода, которые отключают подачу бензина.

Дальнейшее развитие системы привело к появлению на авто с карбюратором экономайзеров принудительного холостого хода. Решение создано для экономии топлива, которая достигается путем отключения подачи топливно-воздушной смеси в тот момент, когда происходит торможение двигателем. Указанный клапан также выполняет отключение подачи смеси после выключения зажигания, что препятствует дальнейшей работе силового агрегата в результате самостоятельного воспламенения горючего. В том случае, если подобная система установлена на автомобиле и двигатель работает после выключения зажигания, потребуется диагностика экономайзера. Клапан ЭПХХ может подклинивать, наблюдается разрыв мембраны и т.д.

Такая настройка предполагает уменьшение объема подаваемой смеси, в результате чего температура и давление в цилиндрах понизятся. При учете использование соответствующей марки бензина самовоспламенение смеси исключается.

Самопроизвольное возгорание топлива и нагар

Одним из последствий детонации и продолжительной езды на топливе с низким октановым числом выступает усиленное нагарообразование в камере сгорания. Обильный слой нагара может вызвать эффект калильного зажигания. Двигатель в подобных условиях продолжает работать даже после выключения зажигания.

Это происходит по причине того, что воспламенение топливной смеси происходит не в результате образования искры, а от контакта с горячими электродами свечи зажигания. Также возможен эффект самопроизвольного воспламенения в результате тления нагара или контакта с раскаленной головкой выпускного клапана.

Для удаления нагара без серьезного вмешательства активно применяются различные присадки в топливо, которые добавляются прямо в горючее. Дополнительно можно «почистить» двигатель, двигаясь 5-10 минут на повышенной передаче и максимальных оборотах. Отметим, что указанные решения действенны только при условии легких форм закоксовки. При более серьезных загрязнениях камеры сгорания необходимо воспользоваться способом раскоксовки двигателя при помощи активных реагентов или осуществить разборку ДВС для механической очистки.

Калильное зажигание и свечи

Зачастую КЗ возникает в результате избыточного нагрева изолятора или электрода свечи зажигания. Температура указанных элементов напрямую зависит от размера поверхности юбки изолятора свечи. Большая поверхность будет означать, что такие свечи являются «горячими».

Высокофорсированные агрегаты (атмосферные, малообъемные с большой мощностью или оснащенные турбонаддувом), а также моторы с высокой рабочей температурой требуют установки так называемых «холодных» свечей зажигания. Добавим, что для исключения появления калильного зажигания и нормальной работы ДВС в обязательном порядке нужно устанавливать свечи, калильное число которых рекомендуется производителем для установки на конкретный тип двигателя.

Другие причины появления КЗ

Вмешательство в конструкцию (тюнинг двигателя) или проведение ремонтных работ может являться причиной, которая влияет на калильное зажигание. Наиболее часто КЗ возникает в результате изменения степени сжатия в большую сторону. Увеличение степени сжатия может произойти после проведения капитального ремонта двигателя. Расточка цилиндров, фрезеровка прилегающей плоскости головки блока цилиндров и другие манипуляции могут привести к фактическому увеличению степени сжатия, КЗ на работающем моторе и дизелингу после его остановки.

Начало подачи (перекрытие канала) и начало впрыска

Термин «начало подачи» относится к действительному началу подачи насоса высокого давления. Вместе с началом подачи (FB) действительное начало впрыска (SB) также имеет большое значение для оптимальной отдачи двигателя. Так как начало подачи (перекрытие канала) может быть определено более просто, чем действительное начало впрыска для двигателя при его остановке, то установка (настройка) топливного насоса высокого давления (ТНВД) производится при начале подачи топлива. Это возможно, т.к. между началом подачи и началом впрыска (4) существует определенное соотношение. Начало впрыска определяется с помощью угла поворота коленчатого вала (5) в области верхней мертвой точки (ВМТ) поршня, при котором о ткрывается форсунка и топливо впрыскивается в камеру сгорания. Начало впрыска топлива в камеру сгорания имеет значительное влияние на начало сгорания топливо-воздушной смеси. Максимальная конечная температура сжатия возникает в ВМТ. Если сгорание начинается раньше ВМТ, то давление сгорания резко возрастает и тормозит движение поршня вверх, уменьшая, таким образом, эффективную мощность двигателя. Резкий рост давления сгорания также приводит к «жесткой» работе двигателя. Сгорание, тем не менее, должно закончиться до того, как откроется выпускной клапан. Имеет место также и понижение расхода топлива, если сгорание начинается в области ВМТ.

Если начало сгорания опережается (2), то температура в камере сгорания возрастает, что приводит также и к увеличению выбросов NOx (1). Если начало впрыска слишком запаздывает (3), то это может привести к неполному сгоранию и к выбросу не полностью сгоревших углеводородов.

Мгновенное положение поршня влияет на движение воздуха в камере сгорания, его плотность и температуру. Соответственно, скорость движения и качество смешивания топливо-воздушной смеси зависят от начала впрыска. Таким образом, начало впрыска также влияет на выбросы сажи и продуктов неполного сгорания. Такая взаимная зависимость удельного расхода топлива и выбросов углеводородов с одной стороны и выбросов черного дыма и N0 с другой стороны требует минимально возможных допусков для начала впрыска, чтобы добиться оптимальных величин (а — оптимальное начало впрыска).

Различные периоды задержки воспламенения при различных температурах требуют температурной коррекции начала впрыска. При подаче топлива, время распространения топлива зависит от длины магистрали. При высоких оборотах это имеет результатом задержку впрыска (т.е. время от начала подачи до начала впрыска). Вдобавок к этому, чем выше обороты двигателя, тем выше задержка воспламенения (т.е. время от начала впрыска до начала воспламенения). Оба этих фактора должны быть скомпенсированы, и это является причиной того, почему в систему впрыска топлива должно быть встроено устройство корректировки момента впрыска, зависящего от числа оборотов двигателя опережения и момента начала впрыска. Из соображений шумности и уменьшения выбросов, различные характеристики начала впрыска для режима полной нагрузки (2) требуются чаще, чем для режима частичной нагрузки (3). Характеристика начала впрыска показывает схематически зависимость начала впрыска (4) от температуры, нагрузки и оборотов двигателя (5). (1 — запуск холодного двигателя).

Температура – отработавший газ

Температура отработавших газов в моторных цилиндрах двухтактных газомоторных двигателей и компрессоров колеблется от 350 до 480 С, а в четырехтактных газомоторных двигателях при номинальной нагрузке от 510 до 520 С.

Температура отработавших газов в выпускной трубе четырехтактных двигателей зависит от типа двигателей и составляет для карбюраторных двигателей 750 – ь 850 К и для дизелей 600 – ь 700 К.

Температура отработавших газов не должна быть ниже 70 С.

Температура отработавших газов зависит в основном от тех же факторов, что и температура в конце процесса расширения. Дальнейшее обеднение смеси приводит к снижению температуры отработавших газов, так как, несмотря на увеличение продолжительности сгорания, максимальна температура цикла уменьшается.

Температура отработавших газов в двигателе внутреннего сгорания достаточно высока, поэтому водяные пары, содержащиеся в них, не могут конденсироваться и уносят с собой скрытую теплоту парообразования.

Температура отработавших газов ( при выпуске из цилиндра) по мере увеличения догорания на линии расширения повышается. Обычно в дизелях на участке догорания выделяется 10 – 20 % всего тепла, введенного с топливом в цилиндр. Тепло, полученное при догорании, является с точки зрения превращения его в механическую работу менее ценным. Догорание происходит в условиях уменьшенной концентрации кислорода при понижающихся давлении и температуре. В современных дизелях средняя скорость выделения тепла за процесс сгорания составляет примерно 150 – 300 ккал / кг град; за время догорания она снижается примерно с 40 – 50 ккал / кг град до нуля.

Температура отработавших газов зависит от частоты вращения коленчатого вала, состава смеси, скорости распространения фронта пламени, момента зажигания или впрыска и других факторов.

Температура отработавших газов зависит от нагрузки и скоростного режима двигателя. С увеличением частоты вращения и нагрузки повышается температура отработавших газов.

Температуру отработавших газов регулируют путем изменения подачи порции топлива насосами, что осуществляется перемещением регулирующей рейки в ту или иную сторону. При увеличении выхода рейки путем ввертывания регулировочного винта подача топлива увеличивается, а при уменьшении ( винт вывертывают) подача топлива уменьшается. Передвижение рейки топливного насоса на одну риску изменяет температуру отработавших газов примерно на 22 – 25 С.

Температуру отработавших газов регулируют изменением количества подаваемого топлива обоими насосами данного цилиндра. При этом нельзя спиливать или передвигать упор, установленный на рейке насоеа при определении его подачи на стенде.

Температуру отработавших газов в нейтрализаторах повышают, уменьшая теплопотери теплоизоляцией корпуса нейтрализатора, применяя специальные экраны, используя тепло реакции окисления, а также кратковременно уменьшая угол опережения зажигания.

Повышение температуры отработавших газов против максимально установленной ( 430 С) или при разности температуры между отдельными цилиндрами более 60Э С может привести к появлению трещин на головке или задиру поршней. Поэтому температуру отработавших газов проверяют при всех реостатных испытаниях дизель-генераторной установки, как правило, при максимальной мощности дизеля и 850 об / мин коленчатого вала и температуре выходящей воды из дизеля 70 – 80 С, масла 60 – 75 С.

Наиболее точно определение температуры отработавших газов может быть выполнено калориметрическим методом. Но применение его в условиях обычных испытаний довольно сложно.

У дизеля Д100 температуру отработавших газов и давление сгорания корректируют изменением регулируемых параметров обоих топливных насосов данного цилиндра. После регулировки нагрузки по цилиндрам проверяют величину выхода реек топливных насосов. Считают нормальным, когда разность зазоров между упором рейки и корпусом насоса для всех насосов дизеля Д100 не превышает 0 3 мм, а дизеля Д50 – 0 1 мм.

Что такое преждевременное воспламенение смеси в цилиндре (Low Speed Pre Ignition (LSPI)?

Исследователи выяснили, что у современного автомобилиста есть куда более опасный враг, который может очень быстро уничтожить двигатель на автомобиле.

Явление называется «преждевременным воспламенением смеси в цилиндре» (LSPI), и оно серьезно и разрушительно. Напуганы? Эксперты вроде Скотта Линдхольма, специалиста по глобальному применению продуктов смазочных материалов Shell (Global Product Application Specialist для Shell Lubricants), еще не до конца понимают, чем точно это вызвано, но первые рекомендации по правилам защиты мотора они дать могут.

«Классическая детонация и LSPI – два разных события, вызванные двумя различными явлениями, – объясняет Линдхольм. – Типичная детонация может контролироваться при помощи топливного октанового числа и расчетом появления искры и очень предсказуема. LSPI (преждевременное воспламенение смеси в цилиндре) все еще не очень хорошо понята и может произойти спонтанно».

И LSPI, и типичная детонация появляются из-за того, что бензин в цилиндрах воспламеняется в неправильное время, хотя условия, приводящие к каждому феномену, различны.

Детонация происходит на более высоких оборотах и под более высокой нагрузкой, когда двигатель разогрет и упорно крутит маховик. Но LSPI может произойти на очень низких оборотах и при гораздо более легкой нагрузке. Второе явление также случалось в рабочем диапазоне, где у современных двигателей наиболее высокая топливная экономичность. В отличие от детонации, LSPI очень непредсказуемо.

Признаки появления калильного зажигания

Заметим, что на транспортных средствах, имеющих двигатель с большим рабочим ресурсом, причиной появления калильного воспламенения являются углеродистые отложения на стенках камеры сгорания. Чтобы полностью исключить появление опасного для силового агрегата явления, достаточно периодически очищать поверхности деталей от образовывающегося на них налета.

Более опытные владельцы автотранспорта определяют наступление опасного момента после выключения зажигания. При этом двигатель не глушится, а топливная смесь внутри его цилиндров продолжает детонировать при воспламенении. Вместе с этим на тахометре наблюдается повышенное число холостых оборотов, а мотор транспортного средства работает нестабильно, слышны сильные хлопки в области капота.

Как уберечь двигатель

Как только было замечено подобное явление, значит, силовой агрегат автомобиля нуждается в проведении капитального ремонта. В ходе его выполнения, выработавшие свой ресурс, маслосъемные колпачки и кольца поршней заменяются новыми. Без определенных знаний и наличия соответствующих инструментов самостоятельно отремонтировать двигатель не представляется возможным. Как правило, ремонт силового агрегата достаточно трудоемкий и дорогостоящий процесс, цена которого и сроки выполнения полностью зависят от износа составных частей и деталей. После его проведения появление этого опасного явления будет устранено, вместе с этим двигатель будет работать намного тише, исчезнут шумы и посторонние стуки.

Определив, что влияет на возникновение калильного воспламенения рабочей смеси, в завершении публикации стоит упомянуть о мерах профилактики:

  1. Правильный выбор свечей зажигания, основанный на рекомендациях автопроизводителя. Свечи обязательно должны иметь предписанное калильное число.
  2. Профилактика неисправности системы охлаждения силового агрегата, которая заключается в постоянном поддержании ее пропускной способности. Это означает, что все элементы системы должны находиться в чистоте, а патрубки не быть завоздушенными.
  3. Следить за температурой двигателя и не допускать возникновение его перегрева.
  4. Использовать только качественно топливо, которое имеет необходимо октановое число.
  5. Выполнять периодическую проверку и регулировку угла опережения зажигания.
  6. Контролировать состояние выпускного клапана и поршневых колец.
  7. Не подвергать силовой агрегат чрезмерным нагрузкам без необходимой на то причины.

Соблюдение этих простых правил поможет продлить ресурс работы двигателя автомобиля и сэкономить кругленькую сумму в случае его поломки.

https://youtube.com/watch?v=s188j1_SDso

Из каких материалов делают свечи зажигания?

Кроме всего прочего, свечи различаются и по материалу, из которого они изготовлены. Свечи могут быть одно или биметаллическими, но так как времена, когда свечи производились только для советской техники прошли, в нынешнее время изготавливаются из двух металлов – медного (или хромо-никелевого) сердечника и стальной оболочки. Такой метод применяется чтобы обеспечивать быстрый и надежный пуск двигателя, а также быстрый отвод тепла во время работы, поскольку стальная оболочка быстро прогревается на начальном этапе работы, а медный сердечник хорошо отводит тепло при рабочей температуре от 500 до 900 °C.

Но для повышения устойчивости к коррозии и, соответственно, увеличения срока службы, такую классическую компоновку разбавляют тем, что на центральный электрод делают напайку, из сплавов стали и других дорогих металлов типа платины, иридия, палладия или вольфрама или полностью заменяют медный сердечник.

Что такое калильное число свечей зажигания?

Калильное
число (КЧ) фиксирует время, по прошествии которого свеча доходит до состояния,
когда начинает происходить калильное зажигание. От КЧ
зависит состояние свечи: чем оно больше, тем меньше компонент нагревается. С малым
КЧ свеча будет “горячей”, с увеличенным – “холодной”.
“Горячие” варианты подходят, когда автомобиль не испытывает больших
нагрузок. Но если их эксплуатировать при нагрузках, они будут перегреваться,
что приведёт к калильному зажиганию. Если планируете активно использовать автомобиль,
лучше горячую свечу заменить на холодную, предварительно уточнив тепловые
параметры.

Защита от калильного зажигания

Трудно однозначно сказать, когда именно возникает калильное зажигание. Но превентивные меры всегда сводятся к следующему списку:

  1. Свечи должны соответствовать эксплуатационным характеристикам;
  2. Учитывается калильное число;
  3. Качество топлива;
  4. Периодическая диагностика.

Соответствие свечей – это главное условие, которое может предотвратить калильное зажигание

Важно учитывать калильное число, которое различно для каждого двигателя

Если свеча работает нормально, то температура ее изолятора находится в пределах 600 градусов, но если она выше или ниже, то очень скоро можно ждать нежелательных последствий. На холодных свечах может образовываться нагар, который нарушает работу свечи, и тогда развивается калильное зажигание.

Образование токсичных продуктов и снижение содержания токсичных продуктов в выбросах дизельных двигателей

В отличие от двигателей с искровым зажига­нием, оборудуемых каталитическими нейтра­лизаторами отработавших газов, работаю­щими при λ = 1, значительно снижающими количество выбросов, в отношении дизель­ных двигателей значительно большее значе­ние имеет снижение образования токсичных продуктов в самом двигателе. Кроме продук­тов горения топлива, присущих двигателям с искровым зажиганием, таким как СO2, Н2O, NOx, НС и СО, следует также учитывать вы­бросы сажи и твердых частиц.

Для снижения содержания оксидов азота в выбросах полезны меры, направленные на снижение температуры сгорания топлива. Это может быть сделано посредством сниже­ния концентрации кислорода в зоне горения. Температуру горения топлива также можно очень легко снизить, сдвинув момент зажи­гания в сторону запаздывания или снизив давление впрыска топлива.

Снижение давления впрыска топлива или концентрации кислорода, как правило, вы­зывает увеличение содержания в выбросах сажи. Образование сажи является сложным процессом, зависящим как от гидродинами­ческих, так и термодинамических граничных условий. Вначале значительное количество сажи образуется в зонах локального обогаще­ния смеси (λ < 1), однако в ходе последую­щих процессов сгорания топлива количество сажи уменьшается более чем на 70% за счет процессов окисления. Очень большое значе­ние имеет высокий уровень турбулентности, способствующий окислению сажи на стадии расширения. Однако, важную роль играет также уровень температуры. В целом на про­цесс образования сажи оказывают влияние локальные взаимодействия между струей впрыскиваемого топлива, зоной горения, не­сгоревшей смесью, геометрией поршня и протеканием процесса сгорания топлива.

Содержание в выбросах оксидов азота снижают меры, направленные на снижение температуры, такие как рециркуляция отработавших газов, процессы Миллера  или частичная гомогенизация. Все это с избытком компенсирует наблюдаемое при этом увеличение содержания сажи (см. рис. «Выбросы NO и сажи» ). Уровень сложности и затрат, необ­ходимых для снижения содержания обоих этих компонентов, весьма высок. В настоя­щее время все более широко применяется рециркуляция отработавших газов, для сни­жения содержания оксидов азота в сочета­нии с очень высокими давлениями впрыска (> 2000 бар).

В этом контексте следует различать вы­бросы сажи и выбросы твердых частиц. Сажа состоит из чистого углерода, в то время как твердые частицы также содержат капельки топлива или масла, частицы металла, про­дукты коррозии и сульфаты.

Соединения НС и СО обычно не имеют большого значения в отношении выбросов дизельных двигателей. Тем не менее, следует учитывать влияние на выбросы твердых ча­стиц углеводородов. В частности, происходит увеличение концентрации НС и СО в случае значительного сдвига момента зажигания в сторону запаздывания, сопровождаемого неполным сгоранием топлива.

Что такое, калильное зажигание — причины. Калильное число свечей зажигания

Многие водители, наверное, слышали о таком явлении, как калильное зажигание, да что там слышали — знают, что это такое не понаслышке.

Причины калильного зажигания и методы устранения

Какие же бывают основные причины калильного зажигания? Давайте выясним:

1. Оно характеризуется тем, что топливо – воздушная смесь в цилиндрах двигателя воспламеняется не с помощью искры свечи зажигания в точно заданный момент, а произвольно, например, от раскаленных частичек нагара или от перегретого корпуса свечи, вернее, ее изолятора.

2. Также, появление калильного зажигания бывает от применения низкооктанового числа топлива и сбитого угла опережения зажигания.

Существуют конструкции двигателей внутреннего сгорания, в которых используется не искровая система зажигания, а именно калильное зажигание. Свечи в таких двигателях так и называются – свечи накаливания.

Правда, такие схемы встречаются довольно редко, а для традиционного двигателя возникновение калильного зажигания чревато самыми негативными последствиями и серьезными поломками двигателя, из-за неуправляемого процесса воспламенения смеси.

Хорошо если просто рассыпается изолятор свечи или сгорит электрод, а если случится задир поршня или он прогорит.

Так что лучше заранее предотвращать возникновение калильного зажигания. Для этого следует заправлять топливо с рекомендованным октановым числом для конкретного мотора, почаще проверять установку зажигания и эксплуатировать двигатель автомобиля с рекомендованными свечами зажигания.

Калильное число свечей зажигания

Чтобы избежать возникновения такого негативного явления, необходимо строго подбирать свечи по так называемому калильному числу, в соответствии с рекомендациями производителя автомобиля.

Калильное число свечей зажигания, показывает их тепловую характеристику. Известно, что свеча может нормально работать, если её изолятор имеет температуру около 600°С. Если температура свечи будет выше и приблизится к 900 градусам, может возникнуть калильное зажигание.

В свою очередь, недостаточный нагрев свечи также нежелателен, так как при низкой температуре свеча утрачивает способность самоочищаться от нагара и тогда отложившийся на электродах свечи нагар, помешает искрообразованию, и свеча перестанет нормально работать.

Так как двигатели имеют разную конструкцию и режимы работы, то температурный режим в камерах сгорания у них также будет отличаться. В соответствии с этим тепловые характеристики используемых в двигателях свечей, то есть их калильные числа так же отличаются.

Обычно свечи принято делить на горячие, у которых калильное число лежит в пределах 11 – 14, средние с калильным числом от 17 до 19 и холодные от 20. Можно считать, что чем больше калильное число свечи, тем она «холоднее».

Горячие свечи используются в тихоходных, малооборотистых и малофорсированных моторах, с относительно невысокой температурой в камерах сгорания, в свою очередь, холодные свечи рассчитаны на использование в высокофорсированных, высокооборотистых двигателях с большой температурой в камерах сгорания.

Нельзя самостоятельно «экспериментировать» с подбором свечей зажигания по калильному числу для двигателя автомобиля — в этом вопросе нужно руководствоваться только инструкцией по эксплуатации автомобиля, где указывается рекомендуемых тип свечей.

В случае работы двигателя при выключенном зажигании, необходимо включить вторую передачу, затормозить автомобиль с помощью тормоза и отпустить плавно педаль сцепления. Таким способом вы избавитесь от (дизелинга), такая неисправность возникает от самовоспламенения рабочей смеси и это не калильное зажигание, как думают ошибочно многие.

Потому что калильное зажигание может быть только у двигателя, который работает под нагрузкой, то есть, при высокой частоте оборотов.

От искры до каления один шаг

Bosch

Свечи зажигания Bosch маркируются по аналогичному принципу. К примеру, маркировка WR7DC расшифровывается как:

  • W — стандартная резьба на 14;
  • R — резистор против помех;
  • 7 — калильное число;
  • D — размер резьбовой части, равный 19 миллиметрам;
  • С — электрод выполнен из медного сплава (О — стандартный сплав, S — серебро, Р — платина).

Свечи Bosch с маркировкой WR7DC, по сути, могут заменить отечественные свечи А17ДВР, которые устанавливаются в двигатели автомобилей ВАЗ разных моделей.

Блокиратор КПП на Toyota Camry

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделитесь с друзьями:
Great Авто
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.

Adblock
detector